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The main approaches of discretising the viscous operator of fluid flow on hybrid meshes are
analysed for accuracy, consistence, monotonicity and sensitivity to mesh quality. As none
of these approaches is fully satisfactory, a novel method using an approximated finite-ele-
ment approach is presented and analysed. The methods are compared for the linear heat
equation and the Navier–Stokes equations. While the novel approximated finite-element
method performs significantly better for the linear heat equation, a stabilised edge-based
method performs equally well for the considered test-cases for the Navier–Stokes
equations.
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1. Introduction

Unstructured tetrahedral meshes have become widespread in use for low and medium Reynolds number flow computa-
tions as complex geometries can be meshed with little effort. Many applications in CFD however involve the simulation of
high Reynolds number flows with strong shear layers which are best captured on regular and aligned meshes. Typical are the
use of hexahedral or prismatic elements in the boundary layer, which significantly increases the accuracy in the presence of
very strong gradients normal to the wall. In addition, a hexahedral mesh has fewer elements and edges compared to a tet-
rahedral one with the same number of nodes. Hence a versatile CFD discretisation needs to be able to perform well on
meshes composed of triangles and quadrilaterals in two dimensions, and tetrahedra, pyramids, prisms and hexahedra in
three dimensions.

The typical mesh generation algorithms that are currently used add a few further requirements. While irregular meshes
can be avoided by switching away from tetrahedra, a discretisation should be able to cope with skewed but regular meshes
as often encountered, e.g. along curved boundaries or in turbo-machinery simulations. Hence accuracy should be maintained
on parallelograms. High Reynolds number flows involve thin boundary layers which may require element aspect ratios in
excess of 1000 for an efficient resolution and a discretisation has to be able to cope with that. The emerging unstructured
quadrilateral and hexahedral mesh generation algorithms often produce meshes with irregular cells when coping with com-
plex geometry. Hence a desirable aspect of the discretisation is to maintain accuracy on irregular quadrilaterals and
hexahedra.

One can argue that the discretisation of the convective operator in the Navier–Stokes equations on hybrid grids is rela-
tively straightforward, see e.g. Barth [1]. There is a degradation of the accuracy due to poor mesh quality on the one hand and
. All rights reserved.
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due to loss of regularity at the hybrid interface on the other [2]. These effects are also present on purely triangular and in
particular tetrahedral grids and typically can be dealt with through small amounts of mesh refinement.

On the other hand, the discretisation of the diffusive fluxes on hybrid grids is more difficult and no fully satisfactory ap-
proach has been presented to date. This paper seeks to analyse the possible variants for accuracy, consistence, monotonicity
and sensitivity to mesh quality using Taylor analysis and positivity. The theoretical results are then tested by applying the
best approaches to the linear heat equation and the Navier–Stokes equations.

In Section 2, the test problem is introduced, the discretisation of the convective fluxes is presented and the existing dis-
cretisation approaches for the diffusive fluxes are reviewed. Section 3 defines the geometry and recalls the commonly used
extension of the convective discretisation to hybrid grids. Section 4 reviews the popular approaches for the discretisation of
the viscous operator, while in Section 5 the formulation of four alternative discretisations for the diffusive operators are pre-
sented in detail and applied to the heat equation. Their consistence, accuracy, monotonicity and sensitivity to mesh quality is
compared and verified in numerical tests. This study is performed using Taylor expansions and only local behaviour is of
interest. This choice is motivated by the necessity to recover the desired accuracy on meshes composed of quadrilateral ele-
ments. Comparative results for the two useful discretisations for the Navier–Stokes equations are presented in Section 6, fol-
lowed by concluding remarks in Section 7.
2. Problem description

To analyse the properties of the investigated discretisations, two model problems will be considered: the heat equation
and the Reynolds Averaged Navier–Stokes (RANS) equations.

2.1. Heat equation

As a model problem for gradient reconstruction, let us consider the linear heat equation:
@T
@t
¼ aDT; ð1Þ
where T is the temperature, a is the constant diffusive coefficient and D is the Laplacian. As we consider steady-state appli-
cations the derivative with respect to time t is not relevant. In a general framework, defining a control volume C with volume
V, a finite-volume semi-discrete scheme can be expressed as:
V
@T
@t

� �
¼ a

Z
@C
rT � nds; ð2Þ
where @C represents the boundary of volume C and n is the outward local unit vector, normal to @C.

2.2. Navier–Stokes equations

The compressible Navier–Stokes equations for air, which is assumed as a perfect gas, are written in the following compact
conservative form (Eq. (3)):
@W
@t
þr � FðWÞ ¼ r � DðW ;rWÞ; ð3Þ
where W represents the vector of conservative variables ðq;qU;qEÞT with the density q, the total energy E and the velocity
vector U. FðWÞ represents the convective operator and DðW ;rWÞ represents the diffusive operator which depends on gra-
dients of the variables. Introducing the pressure p and the total energy E ¼ eþ 1=2kUk2 which is the sum of internal and ki-
netic energies, the Euler fluxes F and the viscous fluxes D are defined by:
F ¼ ½qU;qU � U þ pI;UðqEþ pÞ�T ; D ¼ ½0; S; S � U � q�T : ð4Þ
S is the stress tensor which becomes for a Newtonian fluid
S ¼ l rU þrUT � 2
3
r � UI

� �
: ð5Þ
The molecular viscosity l is a function of the temperature T through the Sutherland’s law:
l ¼ l0
T
T0

� �3
2 T0 þ Cs

T þ Cs
with Cs ¼ 110:4 K; ð6Þ
where l0 is the molecular viscosity at the reference temperature T0. The heat flux q is modeled by the Fourier’s law:
q ¼ �krT with k ¼ Cpl
Pr

; ð7Þ
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where T is the temperature and k is the thermal conductivity. The Prandtl number is Pr ¼ 0:72 and Cp is the heat capacity at
constant pressure. Finally, the equations are closed by the perfect gas law p ¼ qRT with R ¼ 287 J=kg K.

Applying the standard finite-volume integration to Eq. (3) on a control element C with volume V, one finds
d
dt

Z
C

W dv þ
Z
@C

FðWÞ � nds ¼
Z
@C

DðW ;rWÞ � nds; ð8Þ
with n being the unit outward normal to the dual volume boundary @C. The volume flux integrals have been converted to
surface integrals using the Green–Gauss theorem.
3. Discretisation

Let fsi; i ¼ 1;Nsg denote the Ns elements of the mesh. These elements are triangles and quadrilaterals in two dimensions
or tetrahedra, prisms, pyramids and hexahedra in three dimensions. From now on, this mesh will be called the ‘primal’ mesh
and its elements will be denoted as the ‘primitive’ elements. In the vertex-centred finite-volume approach considered here,
the flux balance is evaluated on a dual mesh composed of cells Ci around mesh nodes i.

3.1. Definition of dual cells for a hybrid mesh

The well-known extension of the definition of the median dual volume from simplex to primitive elements introduced by
Dervieux [3] for the Euler equations and by Rostand and Stoufflet [4] for the Navier–Stokes equations is adopted here (Fig. 1).
Hence, in two dimensions, the volume around a mesh node is limited by ‘facets’ linking the midpoints of the edges in the
primal mesh to the barycentres of the elements obtained by arithmetic averaging of the nodal coordinates. In three dimen-
sions, the dual volume is delimited by triangular facets between the edge midpoints, the face barycentres and the element
barycentres.

3.2. Computation of convective fluxes

The extension of the convective flux computation to hybrid meshes is well-known, e.g. following [1], and reported here
for completeness. For the Navier–Stokes equations, the convective fluxes F in Eq. (8) are computed with upwind schemes
based on approximated Riemann solvers [5] at the dual interface. For the first-order convection scheme, the extension to
hybrid meshes is straightforward since the only required quantities are the flow states Wi and Wj at the left and right hand
sides of the interface, respectively, the edge-normal and the surface area. The edge-normal for a mesh edge ij is the sum of
both facets attached to that edge as shown in Fig. 2.

Second-order accuracy is obtained by using a MUSCL-like extension [6–8] which involves a combination of upwind and
centred gradients. More precisely, let rWi be an approximation of the gradient of W at node i. For edge ij between nodes i
and j, a second-order accurate convection scheme is obtained by replacing the states Wi and Wj by the states Wij and Wji,
respectively. They are defined by:
Wij ¼Wi þ 0:5UðbrWi � ij; ð1� bÞðWi �WjÞÞ;
Wji ¼Wj þ 0:5UðbrWj � ij; ð1� bÞðWj �WiÞÞ:

�
ð9Þ
In Eq. (9), U is a slope limiter and computations were performed using a Van Albada-type limiter [9]. The positive constant b
represents the amount of up-winding and is chosen here as b ¼ 2=3. The gradient rWi at node i is evaluated using Green–
Gauss integration over the dual volume. Therefore, the same approach as in the simplex case in adopted and the numerical
extension to hybrid grids does not present any particular difficulties. However, the weakness of the approach remains for
non-simplex elements and for distorted cells, second-order of accuracy may be lost.
Fig. 1. Definition of the dual volume on a triangular mesh (left) and boundary of the dual volume inside a tetrahedron (right).



Fig. 2. Convection flux computation: definition of the surface and of the unit normal vector n for edge ij.
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3.3. Computation of diffusive fluxes on simplices

On triangular and tetrahedral meshes, the standard P1 finite-element discretisation induces a constant gradient over the
element and a conservative scheme is built with the a ‘‘good” choice for diffusion coefficients. Moreover, following the def-
initions summarised in [10], a local analysis based on Taylor expansion shows that the P1 finite-element discretisation is
weakly consistent on any mesh composed of equilateral triangles. On the set of primitive mesh elements EðiÞ containing
node i, the diffusive term of Eq. (8) can be written as
Z
@Ci

DðW;rWÞ � nds ¼
X

T2EðiÞ

Z
@Ci\T

DðW ;rWÞ � nds: ð10Þ
The P1 finite-element approach leads to a constant gradient on any simplex mesh element and for a diffusion term D which
depends linearly of rW , the gradient can be factored out of the integral over @Ci \ T . Billey et al. [11] demonstrated the
equivalence of piecewise-constant finite-volume and P1-Galerkin finite-element discretisation on a simplex mesh composed
of triangles and Barth [1] gave a simple edge-based expression for the right hand side of Eq. (10).

However, the equivalence of these finite-volume and finite-element discretisations does not extend to non-simplex prim-
itive elements. There is a range of possible discretisations for the viscous operator on hybrid grids with very distinct prop-
erties. An overview of existing methods is presented in the next section.
4. Computation of diffusive fluxes on non-simplex elements

A number of possible discretisations of the viscous terms on hybrid unstructured meshes have been presented in the
literature.
4.1. ‘‘Edge-based” methods

Mavriplis and Venkatakrishnan [12] proposed an approach that consists of using the ‘‘thin shear layer” assumption
in order to neglect cross-derivative terms, replacing the viscous term in the Navier–Stokes equations by the Laplacian.
For a node i, this reduces the stencil to all the nodes j connected by an edge to node i and the diffusive flux balance on
the dual cell can be split into edge contributions. This constitutes an advantage for the implementation in the popular
edge-based framework [1,13] as contributions for convective and viscous fluxes can be computed in loops over edges
only.

Haselbacher et al. [14] applied the edge-based discretisation of Mavriplis and Venkatakrishnan [12] to reconstruct the
normal gradient component and a Green–Gauss formula to reconstruct the tangential gradient component. Numerical tests
lead to the conclusion that the tangential component can be neglected without losing accuracy. This method is then equiv-
alent to the ‘‘thin shear layer” assumption.

Instead of using the ‘‘thin shear layer” assumption, Galle [15] proposed to reconstruct the gradient at vertex i by a Green–
Gauss formula applied on the dual cell Ci. The flux is then computed at mid-edge. He could show good agreement between
computed and experimental results. Crumpton et al. [16] added a corrective term to the flux expression to improve stability
on high aspect-ratio meshes. However, Eymard et al. [17] showed that this approach is second-order accurate only on a mesh
composed of regular parallelograms. In conclusion, this approach is very simple and converges well but is only first-order
accurate on irregular meshes.
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4.2. ‘‘Cell-vertex” methods

In cell-vertex methods, a flux residual is computed over the primitive elements and is then distributed to each vertex
using appropriate weights [18]. The stencil is compact and the scheme is linear preserving, i.e. second-order accurate. How-
ever, the scheme is not monotone on primitive elements and the use of an artificial viscosity model is required, which in turn
reduces accuracy and may violate conservation.

Crumpton et al. [18] proposed three different gradient reconstructions defined in Fig. 3. The first one computes the NS and
WE gradient components at node i (Fig. 3(a)). The reconstruction is simple but second-order accurate only on regular
meshes. The second technique computes gradients on the primitive elements and interpolates the primitive element gradi-
ents to the mesh nodes (Fig. 3(b)). This approach is second-order accurate on meshes composed of parallelograms. Colin [19]
showed that the scheme is not monotonic. Rudgyard [20] introduced a corrective term in the gradient expression to damp
oscillatory chequer-board modes. The scheme is then monotonic but not conservative. Another variant of gradient recon-
struction [21,22] consists of defining a control volume around each edge (diamond cell) and in applying a Green–Gauss for-
mula (Fig. 3(c)). This method is shown to be inconsistent on stretched meshes [23].

Coirier [23] conducted an expansive and thorough study of the properties of discretisations of the viscous operator for
regular, stretched and adaptive Cartesian meshes. In a cell-centred approach, he analysed the numerical behaviour of meth-
ods based on a Green–Gauss gradient reconstruction and methods based on a polynomial gradient reconstruction. The study
revealed that the natural Green–Gauss reconstructions all lead to decoupled stencils which results in convergence problems.

Coirier also considered linear and quadratic reconstructions combined with a linear numerical scheme and found that the
choice of the support volume is not straightforward. Only the quadratic approach reaches second-order accuracy but posi-
tivity is not guaranteed and the large required stencil leads to an ill-conditioned system for the polynomial coefficients.
Studying in particular positivity and consistence, he concluded that it is impossible to define a general scheme for irregular
meshes that is at the same time positive and consistent. He compared an accurate but not positive scheme to a positive but
less accurate one. The study showed that both properties are important as they have a strong influence on convergence and
stability.

Recently, Lipnikov et al. [24] proposed a new numerical scheme for general diffusion in two-dimension. Compared with
Coirier’s approach, the new scheme does not need any interpolation at mesh nodes and the numerical flux is more compli-
cated. Actually, for each surface S between two cells Ci and Cj, the flux for a quantity U is a linear combination of contribu-
tions from cells Ci and Cj and the weights depend both on the cells geometry and on U, leading to a non-linear numerical
scheme. Second-order of accuracy is guaranteed since the scheme is exact for linear and piecewise-linear solutions.

Despite the problems raised by Coirier about Green–Gauss gradient reconstruction, Khawaja [25] applied the Green–
Gauss method to model turbulent flows on meshes composed of tetrahedra and prisms (subsonic flat plate, transonic flow
over ONERA M6 wing, supersonic flow over HSTC aircraft, etc.). He obtained numerical results in close agreement with the
experimental data.

Peroomian et al. [26] used a polynomial gradient reconstruction coupled with slope limiters to avoid oscillatory phenom-
ena. The method does not seem to be completely satisfactory since slope limiters must be applied either to the conservative
or to the primitive variables, depending the case.
4.3. Tessellation-like methods

A novel method for hybrid meshes was presented recently by Papin [27].
Papin uses the nodes of the primal mesh and the barycentres of faces and elements to define for each facet of the dual

volume one specific triangle or tetrahedron, a ‘‘third mesh element”, which contains that facet. As each third mesh element
is a simplex, a constant gradient is defined using Green/Gauss integration or the equivalent standard P1 finite-element ap-
proach. The proposed method is not a classical tessellation method since the facets of the dual volume are unchanged: the
(c)

ii

S

EW

N NW NE

SW SE

W E

N

S

M

(b)(a)

Fig. 3. Gradient reconstruction techniques (a) directly at node i, (b) from the element centroids and an interpolation, (c) edge-based approximation.
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third mesh is only used to construct the gradient for the viscous flux computation. An example of a third mesh element used
by Papin is given on Fig. 4.

The main interest of this technique is that the diffusive flux can be computed straightforwardly on this third mesh using
the standard finite-element approach for simplex elements. Papin has shown that the third mesh elements can be obtained
on any convex initial mesh. Second-order accuracy, conservation and consistence are obtained on regular parallelograms.
Monotonicity is only obtained on rectangles. However, the scheme is computationally expensive since additional gradient
evaluations are needed, such as in the barycentre of each element. Moreover, for meshes composed of elements with high
aspect-ratio such as in a boundary layer, the third mesh elements can be of very poor quality.
4.4. ‘‘Discontinuous Galerkin” approach

Another kind of method is based on the Discontinuous Galerkin (DG) technique. The DG technique was first introduced
by Reed and Hill in 1973 [28] for neutron transport and by Nitsche [29] in 1971 for the approximation of elliptic equa-
tions. Following the work of Cockburn and Shu [30] in 1989, several authors have worked on this technique for the last
decades.

The DG method uses a piecewise polynomial data representation over the element that allows discontinuities at the
cell interfaces. A DG method if limited to only piecewise-linear data and a second-order MUSCL finite-volume method
[31] have the same data representation. However, while the MUSCL method reconstructs the gradients from the conser-
vative flow field, the DG method solves a transport equation for the unknown cellwise gradient. Hence, as opposed to a
piecewise-linear finite-element approach with a continuous reconstruction [1], a full DG diffusion scheme cannot be sim-
ply implemented within the context of a MUSCL-based finite-volume method, however, a finite-volume viscous flux
approximation could take inspiration from the DG formulation of the viscous flux limited to P1 elements only. The aim
to achieve would be to exploit the discontinuous representation to arrive at an accurate and consistent flux formulation
for steep gradients over very few mesh points, similarly to the resolution of shock waves with shock-capturing finite-vol-
ume schemes.

The DG discretisation of the diffusive flux is presented here for completeness and to stimulate further development, we
do not aim to present an exhaustive discussion here. The reader is referred to the broad summary of Arnold et al. [32].

Zhang and Shu [33] use Fourier analysis to show that simple Taylor analysis as performed by the present authors can pro-
duce misleading results for DG discretisations of the diffusion equation.

As our aim is to develop a viscous approximation that can be used transparently with the existing popular MUSCL-based
finite-volume discretisations, we focus on two approaches closest to the finite-volume method.

The approach presented by van Leer and Nomura [34] in 1D performs a smooth reconstruction at the cell interfaces. A
particular choice of approximation to the interface terms based on physical reasoning leads to a conservative stabilisation
term which is of Oð1=DxÞ and which had not been presented in the unified formulation of Arnold et al. [32].

Gassner et al. [35] derive a solution for a diffusive generalised Riemann problem leading to a space–time formulation for
the convection–diffusion equation. To achieve second-order accuracy within a finite-volume method a polynomial recon-
struction of order 3 would be required, which does not easily fit within the framework of existing finite-volume MUSCL
methods. Second-order accuracy can only be achieved within a DG framework that formulates an adjoint-consistent update
equation for the gradient [35].
4.5. Summary

This overview demonstrated the difficulties in defining a numerical scheme for hybrid meshes that is consistent, conser-
vative, sufficiently accurate, positive with a good convergence property and with a reasonable computational cost. In the
next section, we shall analyse four of the most promising approaches and evaluate their performance for the heat equation.
k

j

i

k li j

m

m

Fig. 4. Left hand side: triangle ijk is used for the computation of the flux on dual cell facet mk. Right hand side: tetrahedron ijkl is needed for the
computation of the gradient for flux balance on facet klm.
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5. Comparison of four discretisations for the diffusive operator and application to the heat equation

5.1. Notations

All explanations are based on the notations introduced in Fig. 5 in a two-dimensional context. In the following, let
NðiÞ be the set of nodes j that are linked to node i through the mesh edge ij and let sðiÞ be the set of mesh elements
s formed with node i. The dual cells Ci and Cj around nodes i and j, respectively, share the interface @Cij ¼ @Ci \ @Cj. The
facets of the dual volume Ci around node i that lie within the primal mesh element s are @Ci \ s and have the outward
normal ns

i .

5.2. Necessary properties

An efficient numerical method should satisfy the following properties [1]:

(i) consistence,
(ii) conservation,

(iii) monotonicity,
(iv) second-order accuracy,
(v) insensitivity of precision and convergence to deterioration in mesh quality,

(vi) compact support.

Property (ii) is necessary to ensure a global mass conservation. Even if this point is not so clear for a perfect gas solver,
conservation of the solver guarantees that mass fractions are bounded during the computation of multi-species flows with
chemical reactions. A monotone discretisation (iii) ensures that the solution observes a maximum principle, which is re-
quired on the one hand for bounded fields in turbulence modelling and multi-species flows, and on the other hand for good
stability and good convergence rates. Compact support (vi) is important for effective parallelisation and for resolution of the
highest frequency modes.

Local analysis of consistence is conducted using Taylor analysis and monotonicity is analysed by a positivity argument [1].
These properties are analysed in the following for an edge-based discretisation, a cell-vertex discretisation the standard fi-
nite-element method and a novel approximated finite-element method based on nodal gradients.

5.3. The edge-based approach

As an example for an edge-based discretisation, we shall start from Galle’s formulation [15]. The principle is to define a
gradient at node i by integration over the dual cell boundary associated with node i, assuming linear variation of T along each
edge:
rTi ¼
1
Vi

ZZ
@Ci

Tnds ¼ 1
Vi

X
j2NðiÞ

Ti þ Tj

2

ZZ
@Cij

nds: ð11Þ
The gradient at @Cij is then taken as the mean value of the gradient at nodes i and j:
rTij ¼
rTi þrTj

2
: ð12Þ
Finally, the stability is improved with Crumpton’s correction [16] for the interface gradient:
Fig. 5. Definition of sub-surfaces of the dual cell Ci around node i.
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rTcorr
ij ¼ rTij � rTij � dij �

Tj � Ti

kxj � xik

� �
dij; ð13Þ
with
dij ¼
xj � xi

kxj � xik
ð14Þ
and xi; xj representing the coordinates of vertex i; j, respectively.
Using Eqs. (12), (13) and the definition of dij (Eq. (14)), the scheme is shown to be conservative. The discretisation is con-

sistent, monotonic and second-order accurate on rectangular meshes only [36]. On regular parallelograms, the discretisation
is consistent and second-order accurate.

A truncation error analysis on arbitrary quadrilaterals demonstrates a first-order error. Moreover, in this case, the method
is neither consistent nor monotone. In the following, the method will be denoted ‘‘EB”.

5.4. The cell-vertex approach

As an example of the cell-vertex approach, let us consider the approach proposed by Crumpton et al. [18], Fig. 3(b). Apply-
ing the Green–Gauss theorem, one obtains a constant gradient for each primal mesh element:
rTs ¼ 1
Vi

ZZ
@s

Tnds; ð15Þ
where s is an element of the primal mesh. The diffusive flux at node i is then computed from:
a
ZZ

Ci

rT � nds ¼ a
X
s2sðiÞ
rTs � ns

i : ð16Þ
This formulation is easy to implement and is interesting because the cell gradient is also required for the computation of
convective terms in cell-vertex methods [37], resulting in computational savings. Truncation error analysis shows that
the numerical scheme is second-order accurate and consistent on meshes composed of parallelograms [36]. On meshes com-
posed of other types of elements, consistence has not been demonstrated. However, the stability analysis reveals that the
discretisation is not monotone and oscillatory solutions can develop. To avoid these spurious chequer-board modes, a cor-
rection similar to the one for the edge-based method (Eq. (13)) is added to the gradient expression [20]. The stabilised flux
expression becomes:
a
ZZ

Ci

rT � nds ¼ a
X
s2sðiÞ
rTs

i � ns
i ; ð17Þ
with the following gradient expression:
rTs
i ¼ rTs � dc rTs � dsi �

ðTs � TiÞ
kxs � xik

� �
� dsi: ð18Þ
rTs is defined by Eq. (15), dc is a modelling parameter, Ts is the mean value of T on s; xs the centroid coordinates and dsi is
defined by:
dsi ¼
xs � xi

kxs � xik
: ð19Þ
This correction introduces a modification of the gradient in the direction of the ‘‘diagonal” of the element and this correction
makes the formulation non-conservative.

A theoretical analysis that takes into account this correction (Eq. (18)) shows that the scheme is consistent on regular
rectangular meshes only and that the discretisation is monotonic if the value for dc is chosen in an interval which depends
on the mesh geometry [36]. In two dimensions and for a quadrilateral element denoted ABCD with diagonals of length AC and
BD and with area A; dc must satisfy:
jAB2 � AC2jAC2

2A < dc <
BD2AC2

2A : ð20Þ
In the following, the method will be denoted ‘‘CV”.

5.5. Finite-element reconstruction approach

As an alternative to both previous formulations, the P1 finite-element method can be extended to primitive elements: the
idea is to reconstruct the gradient using the finite-element basis functions of the specific element class. One of the advan-
tages of this approach is that the method reverts to the P1 formulation on simplex elements, which is popularly used.
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The gradient at any point ðx; yÞ of an element s can be evaluated with the finite-element approach:
Fig. 6.
integra
rTðx; yÞ ¼
X
k2Ss

TkrNs
kðx; yÞ; ð21Þ
where ðx; yÞ are the coordinates of a point which belongs to element s of the primal mesh. Ns
k denotes the shape function of

element s associated with node k and Ss is the set of nodes of s. The gradient computation is therefore transferred to the
evaluation of the shape function gradients. The computation of the shape function gradient is based on the transformation
to iso-parametric coordinates.

As an example, one may consider in two dimensions the integration of the flux on @CA \ s where CA is the dual cell around
node A and s is the quadrilateral ABCD, as described on Fig. 6.

Using the Jacobian transformation Js from original ðx; yÞ to iso-parametric ðn;gÞ space, the numerical flux I becomes
I ¼
Z
@CA\s

arT � ndl ¼
Z
@CA\s

a
X4

i¼1

TirxyNs
i

 !
� ndl ¼

Z
@CA\s

a
X4

i¼1

Ti½Js��TrngNs
i

 !
� ndl; ð22Þ
where J is the Jacobian matrix associated with the transformation from ðx; yÞ space to ðn;gÞ one. Using the transformation
(Fig. 6), ndl becomes:
ndl ¼
�dy

dx

� �
¼
� @y

@n ðn;gÞdn� @y
@g ðn;gÞdg

þ @x
@n ðn;gÞdnþ @x

@g ðn;gÞdg

 !
: ð23Þ
Defining functions a and b by:
X4

i¼1

Ti½Js��TrngNs
i ¼

aðn;gÞ
bðn;gÞ

� �
; ð24Þ
the flux I (Eq. (22)) can be written as:
I ¼
Z
@CA\s

a aðn;gÞ � @y
@n

dn� @y
@g

dg
� �

þ bðn;gÞ @x
@n

dnþ @x
@g

dg
� �� �

¼
Z

mOm0
a bðn;gÞ @x

@n
� aðn;gÞ @y

@n

� �
dnþ bðn;gÞ @x

@g
� aðn;gÞ @y

@g

� �
dg

� �

¼
Z 0

�1
a bðn;0Þ @x

@n
ðn;gÞ � aðn; 0Þ @y

@n
ðn;gÞ

� �
dnþ

Z �1

0
a bð0;gÞ @x

@g
ðn;gÞ � að0;gÞ @y

@g
ðn;gÞ

� �
dg

¼
Z 0

�1
f ðn;0Þdnþ

Z �1

0
gð0;gÞdg: ð25Þ
Once aðn;gÞ and bðn;gÞ are expressed analytically, the integral I can be computed using a Gauss integration with two points
for the integrals for f and g. One finds [36] that the integral I is finally equivalent to:
I ¼
Z
@CA\s

arT � ndl ¼ a
1
2
ðrTM þrTGÞ � nMG þ

1
2
ðrTG þrTM0 Þ � nGM0

� �
: ð26Þ
This discretisation is consistent on meshes composed of regular parallelograms [36]. The truncation error remains of order
Oðh2Þ on all other kinds of elements. On regular parallelograms, the scheme is monotonic if the elements are not too sheared
and have a low aspect-ratio: the ratio between the element length and width must be lower than

ffiffiffi
3
p

and the minimum angle
in the parallelogram f must satisfy 0 6 cosðfÞ 6 0:5. This point is clearly a drawback for using this finite-element
y
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discretisation for high Reynolds number boundary layers where the element aspect-ratio can exceed 104. Moreover, for a
hexahedron the computation of the diffusive flux on @CA \ s requires the inversion of seven 3� 3 Jacobian matrices. The
numerical cost is therefore too large for practical applications.

In the following, this method will be denoted ‘‘EXact Finite-Element” approach (EXFE) as opposed to the ‘‘APproximated
Finite-Element” method (APFE) presented in the following section.

5.6. Approximated finite-element reconstruction approach

It is the local and accurate evaluation of the gradient at the interface which bestows the good numerical properties to the
EXFE method. Hence we seek a new method that uses locally varying gradients in the element, but gradients that are much
less expensive and more robust to evaluate.

An obvious approach to nodal gradient computation is to use Green–Gauss integration over the primal mesh which has
already been analysed by Coirier and Jorgenson [38]. Using the ‘‘centroidal path”, an integration path over the forming nodes
of both elements containing the interface leads to a rotated Laplacian with decoupled face neighbours, which gives rise to a
checker-board instability and is inconsistent for meshes with strongly varying mesh size (stretching). This approach has
been adopted by Khawaja et al. [25] and can lead to acceptable results, but Coirier demonstrates its robustness problems.
As an alternative, one could reconstruct face gradients from a linear variation of the nodal gradients computed for the MUSCL
scheme, equivalent to Coirier’s ‘‘existing faces co-volume” approach. This approach leads to a non-compact stencil with
decoupling of all immediate neighbours, resulting in a large number of spurious undamped modes. Using the ‘‘diamond”
path where auxiliary state averages are computed at the barycentres leads to an inconsistent method on stretched meshes.

As an alternative approach to Green–Gauss integration, Papin’s tessellation method calculates local facet gradients on
‘‘third elements” formed within the primal elements. However, the computation of a gradient for each facet does not offer
any savings over the EXFE method and the tessellation can produce poor quality third elements on high aspect-ratio grids or
can fail on non-convex elements.

As a novel approach, let us propose to evaluate nodal gradients in each element on a ‘‘third element” formed from the
edges joined at that node. In the case of simplex elements this recovers the P1 gradients of the EXFE formulation. In the case
of primitive elements except one case this results in the third element being a simplex of all edges joining at that node. The
exception case is the apex node of a pyramid where four edges join: in this case Green–Gauss integration over the pyramid
seems appropriate. Note that the quality of these third elements centred at the nodes maintains the quality of the primal
element and does not degrade under aspect-ratio as Papin’s tessellation does. As a further approximation let us consider
to base-facet gradients the average of the two nodal gradients at either end of the edge that the facet is attached to.

As an example, the gradient computation for node A for the two-dimensional quadrilateral in Fig. 6 would be based on the
triangle ABD and equivalently for the other nodes.

The diffusion flux I (Eq. (22)) is then computed from:
I ¼ a
rTD þrTA

2
� nMG þ a

rTA þrTB

2
� nGM0 : ð27Þ
A Taylor analysis shows that this scheme is conservative, and consistent on meshes composed of regular parallelograms. The
truncation error remains of order Oðh2Þ on all other kinds of elements, as for the EXFE method. On the other hand, the dis-
cretisation is monotonic on rectangles whatever their aspect-ratio.

5.7. Numerical experiments

The steady numerical solution is compared with the analytic solution for a pure heat diffusion problem on the square
½0; L� � ½0; L�:
Z

Ci

@T
@t

dS ¼
Z
@Ci

arT � ndl; ð28Þ
with the constant diffusion coefficient a. In the following, a ¼ 0:75 has been used. Explicit time marching is used and local
time steps are chosen according to stability restrictions for the heat equation. Dirichlet conditions are considered on the
boundaries:
TBðx; yÞ ¼

0 8x 2 ½0; L� and y ¼ 0;
sin p x

L

� 	
8x 2 ½0; L� and y ¼ L;

0 8y 2 ½0; L� and x ¼ 0;
sin p y

L

� 	
8y 2 ½0; L� and x ¼ L:

8>><
>>: ð29Þ
The exact stationary solution of the problem is:
uexðx; yÞ ¼ 1
sinh p

sinh p x
L


 �
sin p y

L


 �
þ sinh p y

L


 �
sin p x

L


 �h i
; ð30Þ
and is shown on Fig. 7.
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The numerical error between exact and approximated solutions is measured in the L2 norm using the following discrete
expression:
Table 1
Acronym

Acro

EB
CV
EXFE
APFE
P1

Table 2
Acronym

Acro

SQ
RE
IQ
TR
e ¼
XNC

i¼1

Vi uex
i � ust

i

� 	2

" #1=2

; ð31Þ
where uex
i is the exact solution value at node i, ust

i the numerical solution value at node i; Vi the dual cell volume. Assuming a
general error distribution e such that e ¼ OðhpÞ, where h is the element diameter, p is the order of accuracy of a chosen meth-
od on a sequence of refined meshes composed of the same kinds of elements. In practice, p is deduced from mesh conver-
gence analysis of numerical results by:
logðeÞ ¼ p logðhÞ þ C; ð32Þ
with C a constant.
The four proposed methods will be denoted with the acronyms defined in Table 1. On triangles, methods EXFE, APFE and

CV reduce to the classical P1 finite-element method and hence are denoted P1 in these cases.
Four kinds of meshes are considered and are associated with acronyms defined in Table 2.
A view of the different kinds of meshes considered is shown on Fig. 8. The irregular perturbed meshes are obtained from

the square-based one through the random process:
xpert ¼ xsq þ h
C d1;

ypert ¼ ysq þ h
C d2;

8<
: ð33Þ
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Fig. 7. Representation of the exact solution of the pure diffusion problem defined by Eqs. (28) and (29).

s for the considered methods.

nym Method for the gradient computation

Edge-based method defined in Section 5.3
Cell-vertex method defined in Section 5.4
Exact finite-element method defined in Section 5.5
Approximated finite-element method defined in Section 5.6

Classical P1 finite-element method on triangles

s for the considered meshes.

nym Mesh

Mesh composed of regular squares
Mesh composed of rectangles (two aspects ratio)
Mesh composed of irregular quadrilaterals
Mesh composed of Delaunay-like triangles



Fig. 8. Examples of meshes SQ, RE, TR and IQ, clockwise from top left.
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where xsq and ysq are coordinates of the square-based mesh. d1 and d2 are random numbers defined in ½0;1�; h is the element
diameter and C is a coefficient chosen in order to have no reversed cells.

For each kind of mesh, three meshes are generated with three different element diameters. The pure diffusion test-case of
Eq. (28) is solved with each of the four methods CV, EB, EXFE and APFE on all the meshes.

Fig. 9 presents the evolution of the logarithm of the error versus the logarithm of the element diameter for the different
meshes, except for squares on which all discretisations are second-order accurate. The orders of accuracy obtained with the
different discretisations are summarised in Table 3. In order to show the impact of the parameter dc for the CV method, two
values are chosen. For method CVf, dc ¼ 0:1 is fixed while for method CVv, dc is the mean between maximum and minimum
values of the stability interval (Eq. (20)).

The CV and APFE methods lose accuracy on perturbed quadrilateral meshes, but remain second-order accurate on trian-
gular meshes. It can be observed that the accuracy of the EB method is particularly affected on the irregular quadrilaterals
and triangular meshes. The EXFE method remains second-order accurate for meshes composed of triangles, of irregular
quadrilaterals and of squares.

On rectangular meshes, high aspect ratios of 2 and 10 are tested. As for squares, the order of accuracy is about 2 for the CV
methods, whatever the choice of the parameter dc (Eq. (18)). This is quite surprising for dc ¼ 0:1 which may not be in the stability
interval of the CV method. The EB, APFE and EXFE methods are second-order accurate whatever the value of the aspect-ratio.

5.8. Linear preservation

Three methods arise as of most interest for the discretisation of viscous fluxes, namely the EXFE, APFE and EB methods.
The CV methods will not be considered due to the lack of conservation. Here we test whether they are able to preserve an
exact linear solution on a test-case suggested by Breil and Maire [39].

On the unit square ½0;1� � ½0;1�, the heat equation with a constant diffusion coefficient equation (28) is solved with the
following set of boundary conditions:
Tðx; yÞ ¼
0 8x 2 ½0;1� and y ¼ 0;
0 8x 2 ½0;1� and y ¼ 1;

�

@T
@y ¼

0 8y 2 ½0;1� and x ¼ 0;
0 8y 2 ½0;1� and x ¼ 1:

�
8>>><
>>>:

ð34Þ



Fig. 9. Order p of convergence of the considered methods. On triangles, methods CV, APFE and EXFE are exactly the classical P1 finite-element formulation.

Table 3
Order of accuracy according to mesh element types.

Element CV EB EXFE APFE

Square 2.01 2.01 2.00 1.98
Quadrilateral 1.18 0.92 2.27 1.44
Triangle 1.96 1.19 1.96 1.96

dc ¼ 0:1 dc ¼ f ðhÞ
Rect., r ¼ 2 2.00 1.998 1.999 2.001 1.998
Rect., r ¼ 10 2.00 1.998 1.998 2.001 1.998
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With the diffusion coefficient a ¼ 1, an exact analytical solution of Eq. (28), Eq. (34) is Texðx; yÞ ¼ x.
Three meshes with square elements are considered based on a uniform discretisation in the x and y directions with 11, 21

and 41 nodes in each direction, resulting in diameters h of 0.1, 0.5 and 0.025.
Defining xsq and ysq as the coordinates of the nodes of a square-based mesh, a perturbed mesh is obtained with a smooth

distortion using the following transformation:
xpert ¼ xsq þ a0 sinð2pxsqÞ sinð2pysqÞ;
ypert ¼ ysq þ a0 sinð2pxsqÞ sinð2pysqÞ;

(
ð35Þ
with the distortion parameter a0. In the computations a0 ¼ 0:1 was used.
A perturbed mesh with an irregular distortion obtained through a random process is also considered. The transformation

is the same as in Section 5.7, Eq. (33). Examples of square-based and perturbed meshes are shown in Fig. 10.
On the square-based meshes, the EXFE, APFE and EB methods reproduce the exact linear solution Texðx; yÞ ¼ x. On the dis-

torted meshes, the EXFE and APFE methods also reproduce the exact linear solution as shown in Fig. 11.
However, this is not the case for the EB method. As an example, an iso-line of the exact solution is compared with the

same iso-line of the EB computation on Fig. 12.
Based on the L2 norm of the error between the exact solution and the numerical one (Eq. (31)), the order of accuracy is

about 1.9 on smoothly distorted meshes and reduces to about 1 on irregularly distorted meshes (Fig. 13). The correction
added to the EB method for stability in the edge direction works well when the mesh and the diffusion direction are aligned.
For the perturbed mesh, however, the correction induces a perturbation in the solution and a reduction in accuracy which
depends on mesh quality.
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points in directions x and y.
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Fig. 11. Numerical solutions with APFE method on mesh composed of 20� 20 distorted quadrilaterals (Eq. (35)) and with EXFE method on mesh composed
of 20� 20 distorted quadrilaterals (Eq. (33)).
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Moreover, the numerical simulations show that the EB method allows the highest values of the CFL-like number, close to
the maximum theoretical value for the linear heat equation of 0.5. Simulations with the EXFE approach require lowering the
CFL-like number to 0.1 for the finest deformed mesh and 0.3 for the medium deformed mesh. The large values of CFL for the
EB method may be explained by the high numerical diffusion of the scheme. For EXFE, the low CFL numbers are associated
with the lack of monotonocity. Simulations with APFE method needs CFL-like numbers between those for EB and EXFE
approaches.



 0.95

 1

 0.95  1

 0.95

 1

 0.95  1

Fig. 12. Comparison of an iso-line of the temperature obtained with EB method and the same iso-line obtained with the exact solution on two meshes
composed of 20� 20 distorted quadrilaterals.

Fig. 13. Order p of convergence for the EB method on the distorted meshes.
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5.9. Summary of the results for the heat equation

The results for the heat equation do not advise clearly against using a CV discretisation of the viscous fluxes: second-order
of accuracy is obtained on smooth meshes composed of quadrilaterals. The lack of conservation is the main drawback of the
method and it is the reason why the CV approach will not be considered in the following.

The EB method is very sensitive to grid irregularity. This may be a disadvantage on meshes from unstructured quadrilateral/
hexahedral mesh generators with irregular elements and meshes produced with prismatic layers at the boundary extruded
from surface triangulations. The method will perform well on regular structured grids which are aligned with the shear layers.

The best methods for the heat equation are the finite-element-based EXFE and APFE methods. The APFE method appears
most suitable as it is only moderately less accurate on distorted quadrilaterals than EXFE method, but maintains full accu-
racy on high aspect-ratio elements. Both the EXFE and APFE methods are linear preserving on perturbed meshes where the
EB method incurs a loss of accuracy.

6. Numerical results for the Navier–Stokes equations

After a short introduction to the base solver NSC2KE, the linearisation of the diffusion in the Navier–Stokes equations is
discussed. Numerical results are presented for the flow over a laminar adiabatic flat plate and for the transonic turbulent
flow over the RAE2822 airfoil.

6.1. NSC2KE solver

NSC2KE [9] is an unstructured vertex-based solver developed at INRIA (French National Agency for Research in Computer
Science and Automation) and is freely available on the web [40]. NSC2KE uses a coupled finite-volume/finite-element tech-
nique to discretise convection and diffusion.

6.2. Non-linear diffusion

The diffusion coefficient in the RANS equations is not constant and a linearisation needs to be defined. Let us consider
the two-dimensional configuration presented in Fig. 14 with the rectangle ABCD with barycentre G. M0, V, U and M refer
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to the midpoints of segments [AB], [BC], [CD] and [DA], respectively. To simplify the explanations, expressions will be
given for the temperature gradient rT.

For a laminar computation with the EXFE scheme one has to compute the integral I:
I ¼
Z
½MG�

krTndsþ
Z
½GM0 �

krTnds; ð36Þ
where [MG] and [GM0] represent the facets of the dual cell CA on the rectangle ABCD. The computation of Eq. (36) is based on a
trapezoidal rule which guarantees second-order accuracy in the computation of the integral. This means that I is computed
from:
I ¼ kM þ kG

2
rTM þrTG

2
n½MG� þ

kG þ kM0

2
rTG þrTM0

2
n½GM0 �; ð37Þ
where n is the area-scaled facet normal. This linearisation is applied similarly to the other discretisations.
Alternative linearisations which interpolate the diffusion flux directly are possible and should be preferred in cases with

strong gradients in the diffusion coefficients, in particular the formulation of Lörcher et al. [41] is based on the exact solution
of a generalised diffusive Riemann problem. However, in order to demonstrate that the presented methods can be used in
general existing finite-volume codes, we have conducted our numerical experiments with the formulation (Eq. (37)).

6.3. Laminar flat plate simulations

All computations with NSC2KE use the same parameters:

� a four-step Runge–Kutta explicit time stepping [9],
� local time steps account for convection and diffusion limits for stability,
� Roe’s approximated Riemann solver [5],
� CFL number fixed at 0.5,
� inflow and outflow boundary conditions based on Steger–Warming flux splitting, as presented in [9].

6.3.1. Numerical and physical parameters
Laminar flow above an adiabatic wall is computed with NSC2KE. The flat plate is 1 m long, the inflow Mach number is

M1 ¼ 0:8 and the Reynolds number is Re1 ¼ 3� 104. Four meshes are considered and are defined in Table 4. The mesh nodes
are uniformly spaced in the tangential direction and a geometric law is applied in the direction normal to the plate. Table 4
lists the following properties of the meshes in the experiment:

� the distance between the first node above the wall and the wall, denoted h,
� the stretching R of successive cell heights,
� the number of nodes in the direction normal to the plate which fixes the domain height.

Each mesh has a triangular variant obtained by tessellation of the corresponding quadrilateral mesh. Meshes 3 based on
rectangles and triangles are shown on Fig. 15.

6.3.2. Effect of diffusion schemes for rectangle-based meshes
In Fig. 16, the pressure and the friction coefficients distributions at the wall are shown for mesh 1 and mesh 4. Mesh 1 is

not sufficiently refined to capture the compression near the leading edge, resulting in low values of Cp and an under-estima-
tion of the friction coefficient Cf . All methods lead to very similar results. Good agreement is found between the theoretical
law of Blasius for the friction coefficient and the numerical values for Cf . Similar results are obtained for meshes 2, 3 and 4
(results for meshes 2 and 3 are not presented).
Fig. 14. Notations introduced for the non-linear diffusion explanations.
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Fig. 16. Wall pressure and skin friction coefficients distribution obtained on meshes 1 and 4 composed of rectangles (second-order accuracy for the
convection scheme).
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side).
6.3.3. Mesh refinement effect for method APFE
The results of a mesh convergence study for the APFE method are shown in Fig. 17. At sufficient distance from the leading

edge the results are very close. Differences can be observed near the leading edge on the mesh 1 which is too coarse (Fig. 18).

6.3.4. Comparison of APFE solution on rectangles with P1 finite-element on triangles
In this section, results obtained with the APFE method on the quadrilateral mesh 4 are compared with results obtained on

its triangulated variant using the P1 finite-element formulation (Table 4). Let us be reminded that on triangular meshes the
APFE method reverts to the classical P1 finite-element method. As shown on Fig. 19, differences occur near the leading edge.
In this case, a rectangle-based mesh leads to the strongest compression, with a higher value of Cp and to a shorter expansion
region. The EB scheme on triangular elements is strongly affected by the deformation of the control volume in the standard
definition of the median dual volume which is used here. This effect may be reduced when using the ‘containment circle’
dual volume suggested by Barth [1], which connects the mid-edges to the containment circle rather than the barycentre,
resulting in rectangular control volumes for this triangulated mesh.

Using a regular rectangle-based mesh improves the convergence rate (Fig. 20). The residual is normalised by the residual
at iteration 1 and the simulation is terminated when the root mean square of the residual is smaller than 5� 10�11. The tri-
angle-based mesh requires 3 times number of iterations to reach convergence compared to the rectangle-based mesh. On the
rectangular-based mesh, the convergence for the EB and APFE methods is virtually identical. On a triangle-based mesh, the
EB method converges slightly faster than the P1 finite-element method, which is consistent with the slightly more diffusive
nature of the EB solution. Moreover, as a quadrilateral mesh has fewer edges for the same number of nodes, the triangle-
based mesh requires 3.4 times the CPU time obtained using the APFE method on mesh 4.
Fig. 17.Mesh convergence for the APFE method with second-order accuracy. Pressure coefficient (left hand side) and wall friction coefficient (right handFig. 18. Mesh convergence for the APFE method with second-order accuracy near the flat plate leading edge. Pressure coefficient (left hand side) and wall
friction coefficient (right hand side).
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Fig. 21.RAE2822: partial view of the mesh.
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6.3.5. Conclusions on the flat plate results
For the laminar flat plate only small differences can be observed in friction or wall-pressure coefficients between the clas-

sical P1 finite-element method applied on triangles and the studied methods for rectangles. The EB, APFE and EXFE schemes
exhibit good numerical properties for the laminar flat plate case. Rectangle-based meshes result in a gain in accuracy and an
appreciable reduction in CPU time and number of iterations.
Fig. 19. Comparison of pressure coefficient obtained on triangle and rectangle mesh. Second-order accuracy for the convection scheme, mesh 4.

Fig. 20. Comparison of convergence obtained on the triangle and rectangle meshes with second-order accuracy.
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6.4. Turbulent flow around the RAE2822 airfoil

The turbulent transonic flow over a RAE2822 profile is a well-documented test-case for which there are experimental
data for the wall-pressure and skin-friction coefficients. The considered test-case is referenced as test-case 9 in [42]. The flow
is fully attached to the adiabatic wall boundary and inflow variables are M1 ¼ 0:734, Re1 ¼ 6:5� 106 for a normalised chord
Fig. 22. RAE2822: convergence residuals on rectangle and triangle meshes.

Fig. 23. RAE2822: pressure coefficient distribution on the wing for rectangle-based mesh (up) and triangle-based mesh (down).



Fig. 24.RAE2822: skin friction coefficient distribution on the wing for rect
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of 1 m. The angle of attack is 2.54�. Compared with experimental values, inflow data are modified as prescribed by the EUR-
OVAL validation project [43]. The turbulence modelling is based on a two-layer k—e turbulence model [44]. As was done for
the laminar flat plate, only the APFE, EB and EXFE methods are considered.

A partial view of the mesh is presented in Fig. 21. The triangle-based mesh is obtained by tessellation of the rectangle-
based one. The numerical parameters chosen for the computations are:

� second-order Roe scheme with van Albada slope limiters,
� CFL = 0.1,
� four stage explicit Runge–Kutta time-integration scheme with local time stepping.

Convergence results are shown in Fig. 22 for rectangles and triangles for the EB and APFE methods. On triangular meshes
the EB and P1 finite-element methods converge only by an order of magnitude due to the deformed control volumes.

On quadrilateral meshes the EXFE computation does not converge when started from an initial solution based on the in-
flow state, even if the CFL number is strongly reduced: the computation leads to negative pressure and density. This can be
linked to a lack of monotonicity as the mesh violates the monotonicity constraint on the element aspect-ratio, which is 9.9
near the leading edge, 148 near the trailing edge and exceeds 1000 in the mid-section. However, the EB and APFE method
converge well and at similar rates.

The solution on the quadrilateral mesh is also very similar as shown in with the Cp profiles in Figs. 23 and 24 for the APFE
and EB methods. This good performance is due to the strong alignment of shear layer and grid. However, the EB method can-
not be expected to work similarly well for detached shear layers which are oblique to the grid. Figs. 23 and 24 also demon-
strate that the shock is captured more sharply on the aligned quadrilateral mesh, a result well-known from Euler
simulations.
angle-based mesh (up) and triangle-based mesh (down).
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7. Conclusion

Four different approaches to model the diffusive fluxes on hybrid meshes have been studied and compared. The first one
is based on a cell-vertex approximation (CV), the second one on an edge-based approach (EB) and the two last ones on finite-
element reconstruction of the gradient (APFE and EXFE methods). The theoretical analysis of local consistence and monoto-
nicity reveals that the methods based on a finite-element-like gradient reconstruction exhibit the best properties, which is
confirmed by the numerical experiments with the linear heat equation. The cell-vertex method needs a corrective term to be
monotonic which makes the formulation non-conservative. The edge-based method is second-order accurate on regular iso-
tropic parallelograms, but only of order one on irregular and on high aspect-ratio meshes.

The methods based on finite-element reconstruction are consistent on meshes composed of regular parallelograms and
their truncation error is of order Oðh2Þ. These methods reduce to the classical P1 finite-element formulation on triangles and
tetrahedra, which is desirable for the extension of simplex solvers as their behaviour on simplex meshes remains unaltered.

The exact (EXFE) and approximated finite-element (APFE) methods however perform differently on high aspect-ratio
meshes. The EXFE method is monotonic on parallelograms with a ratio between the length and width below

ffiffiffi
3
p

and the an-
gle of the parallelogram f bounded as 0 6 cosðfÞ 6 0:5. The APFE method is monotonic on any regular mesh and maintains
second-order accuracy on high aspect-ratio rectangles.

The exact and approximated finite-element approaches (APFE, EXFE) are the only methods which can recover exactly the
linear solution on a smoothly distorted isotropic mesh, while the order of accuracy for the edge-based (EB) method drops
below second-order.

The conservative methods EB, APFE and EXFE have been implemented in the Navier–Stokes solver NSC2KE and results
have been obtained for the RANS equations coupled with a two-layer k—e turbulence model using an aligned regular grid.
The use of a mesh composed of rectangles leads to an increase of the precision of gradient-based quantities such as wall fric-
tion. On the high aspect-ratio quadrilateral mesh, the exact finite-element (EXFE) approach fails to converge due to a lack of
monotonicity. The boundary layer is computed with similar accuracy by both the approximated finite-element and edge-
based methods and with similar convergence rates. This is certainly due to the strong alignment of the flow and the mesh.
This result may not hold for shear layers that are oblique to the mesh as often arise in detached flows or for hybrid meshes
with less regularity in the shear layers.
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